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Abstract

When a principal faces a choice between actions, deciding based on expert predictions

of outcomes can still require the principal to expend large amounts of cognitive effort

processing them. We investigate mechanisms by which the principal can incentivize an

agent to simplify the predictions, while still guiding the principal to their best action.

Our focus is on the use of AI agents, which can allow approaches beyond what is pos-

sible with humans. We first show that this can be done with a setup using two agents.

This is done by rewarding the second agent for providing additional information that

sufficiently changes the principal’s decision, where the principal controls the bar for

sufficiency. We then show how to adapt the mechanism to elicit a prediction in simpli-

fied form, for cases where the set of possible outcomes is very large or continuous.
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1 Introduction

When making a decision between possible courses of action, a common step is predict the

likely outcomes under each. For important decisions outside of our normal expertise, we may

consult an expert and use their predictions instead of or in addition to our own. However,

this introduces the issue of prediction complexity. While it is possible to incentivize accurate

predictions from an expert using a proper scoring rule [Brier, 1950, Good, 1952] regardless of

the number of possible outcomes, for a complicated prediction it can be difficult to identify

what the relevant outcomes should be. In a setting with ten possible outcome variables that

can each take ten possible values, which is far simpler than the real world, predictions over

the resulting 1010 outcomes are far too large to evaluate. To avoid the extensive process of

considering all outcomes, we might want either the expert who provided the prediction or

some independent agent to simplify the prediction on our behalf.

To illustrate, consider the case of a patient at the hospital with appendicitis, choosing be-

tween undergoing an appendectomy or treating it with antibiotics. Based on the patient’s

characteristics, a medical professional can predict the likelihood of various outcomes given

each course of treatment. However, surgery and antibiotics have dozens of potential side

effects, many of which have several degrees of severity. Even if the medical professional

could convey their prediction over all outcomes to the patient, the combinatorially large

size would be overwhelming. Rather, the patient would prefer that outcomes be clustered

together, such as those with side effects of similar type, severity, and/or time frame.

Suppose that a principal hires an agent to simplify a prediction by grouping together out-

comes, where simplicity is measured with some function that strictly increases in value when

any two outcomes are merged. This function might depend on the actual probabilities in-

volved, so that merging two outcomes that each have high probability affects simplicity

differently than merging two outcomes that each have low probability. If the agent is re-

warded only for simplicity, the optimal report is a single group containing all outcomes.

The principal would then be choosing with no information, which could result in taking a
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suboptimal or even catastrophic action.

What the principal would prefer is to simplify the prediction only insofar as it allows them to

still choose their best action, the one which they would take if they spent the effort to process

the full information. However, if the outcome space is large enough that simplification is

useful, it will usually be too large to contract over, meaning the principal cannot align the

agent by rewarding them proportionally to the value of the outcome realized.

1.1 Our Contribution

Our results show that while a single agent cannot be incentivized to provide the simplest

grouping that leads to the best action, using two agents can achieve this outcome. To do

so, once the first agent has provided a simplified grouping of outcomes, the principal allows

the other agent to provide a ‘second opinion’. If the second agent can further split outcomes

in a way that changes the principal’s choice of action, the second agent is rewarded and the

first is punished. This makes it so that the first agent is incentivized to simplify the original

prediction only insofar as it does not change the principal’s decision. Following up on this

mechanism, we provide additional results showing that we can elicit further simplification

while still choosing the optimal action with a mechanism that allows the first agent to reply,

and that either mechanism can be modified to be made symmetric and/or simultaneous.

We then examine the case where there does not exist an expert prediction to be simplified,

but rather one must be elicited in simplified form. In many applications, the set of outcomes

to be predicted over is too large for an expert to provide a prediction on, notably the cases

where outcome variables take on continuous values. While the principal can decide on the

set of outcomes before eliciting predictions, this may cause them to miss crucial information

that experts are aware of. Instead, we would like the expert, who knows all the relevant

information, to come up with the ideal simplification of outcomes and report the probabilities

over that set. We show how the previous mechanism can be modified so that this outcome

is incentivized.
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1.2 Literature Review

The literature on eliciting predictions over a set of outcomes is extensive, starting with [Brier,

1950] and [Good, 1952]. [Gneiting and Raftery, 2007] establishes properties that apply to all

(strictly) proper scoring rules, which are defined as those that (strictly) incentivize reporting

actual beliefs.

Eliciting multiple conditional predictions from a single expert for use in making decisions

was investigated by [Othman and Sandholm, 2010], who showed that because predictions

for untaken actions cannot be evaluated, it is impossible to use predictions from a single

agent to deterministically identify and take the best action available. Follow-up work [Chen

et al., 2011, Oesterheld and Conitzer, 2020] found partial workarounds in the single expert

case, and [Hudson, 2025] showed that multiple agents in a zero-sum competition can be

incentivized in a way that circumvents the impossibility result. While these papers use a

similar model to our proposed research direction, they focus on eliciting accurate predictions

rather than simplifying them. To our knowledge, we are the first to explore the direction of

simplifying prediction.

The rational inattention literature, starting with Sims [2003], models individuals as having

a limited capacity to process information, and needing to allocate their attention efficiently.

Gabaix [2014] connected this model to broader theories of bounded rationality, while Matějka

and McKay [2015] applied it to a discrete choice model. The rational inattention literature

is descriptive, aiming to model how humans typically act, rather than prescriptive like our

work. However, it provides powerful motivation, showing that there is a need for predictions

to be simplified before they can be used in decision making. The novelty of our approach is

in using an outside agent for this simplification.

The mechanism of rewarding agents for changing the principal’s mind appeared in Grace

[2014], which suggested that applying it repeatedly would converge to the truth. Debate

between two agents under the same assumption that the truth will eventually converge was

explored by Irving et al. [2018]. Our proposed work differs in that arguments are restricted to
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be true simplifications of a set of predictions, and that the reward for changing the principal’s

mind only applies off the equilibrium path.

Early work by Blackwell [1951] established a foundation for comparing information struc-

tures, showing that one is more informative than another if and only if it leads to better

decisions for any decision problem and preferences. In contrast, our work is aimed at eliciting

the information structure that leads to the best decision for a specific decision problem and

preferences, and penalizes the more complex information structures that help with others.

The closest paper to our work is Lipnowski et al. [2020], which modeled the case where a

principal without attention cost summarizes information for a decision making agent with

attention costs. They focus on the case that the principal and the agent share the same

utility function over outcomes, while our interest is the case where the decision maker can

set the utility function of the summarizer but cannot contract over their full utility function.

2 Model

Let A be a finite set of actions, and let Ω be an exhaustive and mutually exclusive set of

outcomes. A partition Π of a set X is a finite collection Y = {y1, . . . , yk} of nonempty,

pairwise disjoint subsets with
⋃k

j=1 yj = X. Given two partitions of X, denoted Π1 and Π2,

we say Π2 is a coarsening of Π1 (and Π1 is a refinement of Π2) if every element of Π1 is

wholly contained in some element of Π2. That is, for each π1 ∈ Π1, there exists π2 ∈ Π2 such

that π1 ⊆ π2. A coarsening is strict if |Π2| < |Π1|, and a refinement is strict if |Π1| < |Π2|.

Let CΠ denote all coarsenings of Π and C>
Π the strict ones. Similarly, let RΠ denote all

refinements of Π and R>
Π the strict ones. We abuse notation slightly and let CΩ denote the

set of all partitions of Ω.

Given a partition Π of Ω, a set of conditional predictions P ∈ ∆(Π)|A| consists of a prediction

pa ∈ ∆(Π) for each a ∈ A. The probability assigned to outcome π ∈ Π conditional on action

a is denoted pa,π. For ΠC ∈ CΠ, and prediction P on Π we let PΠC
denote the set of
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predictions over ΠC where pa,πC
=

∑
π⊂πC

pa,π.

We have two agents, denoted 1 and 2, who are risk-neutral, and are interested in a reward

that can be costlessly provided by the principal. These agent preferences are standard for

prediction scoring rules. Both agents have beliefs µ ∈ ∆(Ω)|A| regarding the distribution of

outcomes, with µa denoting the distribution conditional on action a. When agent i reports

a partition, it is denoted Πi, and when they report a prediction, it is denoted P i.

The simplicity of a partition Π ∈ CΩ is measured by a simplicity function S : CΩ → R

that is strictly monotone with coarsening: if Π2 ∈ CΠ1 then S(Π2) ≥ S(Π1), with strict

inequality when Π2 ∈ C>
Π1
. Two examples are (i) cardinality-based Scard(Π) = −|Π|, and (ii)

entropy-based Sent(Π;P ) =
∑

a∈A
∑

π∈Π pΠa,π log p
Π
a,π (log base 2 is used for Shannon entropy).

Without loss of generality, we let S have range [0, 1], which can be accomplished by applying

the sigmoid function σ(x) = 1
1+e−x .

We also have a distance metric between actions, d : A×A → R, and a threshold δ > 0 for

how different actions must be for that difference to be relevant. By default, we think of this

as the discrete metric, such that d(x, y) = 0 if x = y and 0 otherwise, but some applications

suggest a natural metric for distance.

Finally, we have a decision-making principal with complete and transitive preferences ≿ over⋃
Π∈CΩ ∆(Π), i.e., over all distributions induced by possible partitions of Ω. For simplicity,

we assume a tie-breaking procedure (including across actions yielding the same distribution),

so preferences are strict. Let D :
⋃

Π∈CΩ ∆(Π)|A| → A map a set of conditional predictions

to the action corresponding to the most preferred distribution. Agents are assumed to know

the principal’s preferences, since the principal will not want to conceal them.
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3 Results

3.1 Simplifying Predictions

We first analyze the case where an initial expert prediction PΩ on a partition ΠΩ is given.

The principal would like to be provided with the simplest information set such that no

additional information will change their choice of action to one with a distance greater than

δ. Under the discrete distance metric, this is accomplished with the simplest partition Π

such that d(D(PΠR
), D(PΠ)) < δ for all ΠR ∈ RΠ. We will call the set of all such partitions

Π∗, noting that there may be multiple tied for the simplest.

It is straightforward to argue that no scoring rule can always incentivize an expert to provide

a partition in Π∗. For some predictions, the optimal partition would be the maximal coarsen-

ing, which groups all outcomes together, if the principal’s decision upon seeing that happens

to be correct. However, upon receiving such a partition from an expert, the principal has no

way to evaluate whether it is in Π∗. Any scoring rule that incentivizes reporting it therefore

does so independently of whether it is in Π∗, and so cannot incentivize only reporting it in

that case.

Fortunately, we can show that what we cannot incentivize from a single expert, we can

incentivize from a pair of experts.

3.1.1 Sequential Elicitation

To elicit a partition in Π∗, consider the following setup, which we call the second opinion

mechanism. First, agent 1 provides a partition Π1 ∈ CΠΩ
. Then, agent 2 provides a refine-

ment, Π2 ∈ RΠ1 ∩ CΠΩ
. If d(D(PΠ1), D(PΠ2)) < δ, rewards are (S(Π1), S(Π2)− S(Π1)), and

if d(D(PΠ1), D(PΠ2)) ≥ δ then rewards are (S(Π1)−2, S(Π2)−S(Π1)+2). As the principal’s

actual decision does not affect the incentives of the agents, we can leave their implemented

choice when D(PΠ1) ̸= D(PΠ2) undetermined. It is not necessary to subtract S(Π1) from the

score of agent 2 here, or change scores by 2 instead of 1 when the decision shifts sufficiently,
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but it becomes helpful in later extensions.

When the second partition does not shift the principal’s decision beyond the threshold

amount, the first agent’s reward is equal to the simplicity of the partition they provided,

while the second agent’s is the negative value of how much their partition decreases the sim-

plicity score from Π1. If the second agent does not shift the decision, their strictly highest

scoring report in RΠ1 is Π2 = Π1, which avoids the need to evaluate a second partition.

When the second partition does sufficiently shift the principal’s decision, the first agent’s

score drops by 2, making it lower than any score they could receive if the decision does not

shift by at least δ, while the second agent’s score is higher.

We can show that this mechanism incentivizes both agents to report a partition in Π∗.

Theorem 1. In the second opinion mechanism, a subgame perfect equilibrium (SPE) exists,

and in any SPE Π2 = Π1 ∈ Π∗.

Proof. We prove this with backward induction over the game tree. Given Π1, the only

way for the second agent to achieve their highest score of S(Π2) − S(Π1) + 2 is to report

Π2 ∈ RΠ1 ∩ CΠΩ
such that d(D(PΠ1), D(PΠ2)) ≥ δ. In any SPE they will do so if that set is

non-empty. If there is no such partition, then the second agent will report Π2 = Π1, which

gets them a score of 0, higher than they would receive for any other report as S(Π1) > S(Π′)

for all Π′ ∈ R>
Π1
.

In anticipation of this behavior, the first agent will not report any Π1 ∈ CΠΩ
where ∃Π2 ∈ RΠ1

such that d(D(PΠ1), D(PΠ2)) ≥ δ. Doing so would result in a score below 0, lower than the

minimum score for any partition where no such refinement exists. As reporting any other

Π1 will give the first agent a score of S(Π1), the first agent will optimize that score by

choosing the simplest partition that meets the constraint. Any Π1 that has been so chosen

is definitionally in Π∗.

Given that the first agent will report some Π1 ∈ Π∗,and there will not exist any refinements

which would change the action chosen to one a distance greater than δ from D(PΠ1), the

second agent will report Π2 = Π1. This is an SPE, so one always exists, and if either agent
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does not follow this behavior, it is not a SPE.

In addition to incentivizing the simplest partition such that the choice of action will be within

δ of the choice induced by any refinements, we may also be interested in the looser condition

of the choice of action being within δ of D(PΠΩ
). In this case, it would be acceptable if

refinement would lead to a very different decision, so long as further refinement would bring

it back. This is done with the simplest partition Π such that d(D(PΠΩ
), D(PΠ)) < δ. The

set of all such partitions will be called Π∗+, noting again that there may be multiple tied for

the simplest.

To elicit a partition in Π∗+, consider the following setup, which we call the debate mechanism.

First, agent 1 provides a partition Π1 ∈ CΩ. Then agent 2 provides a refinement Π2 ∈

RΠ1∩CΠΩ
. Finally, agent 1 provides a refinement Π3 ∈ RΠ2∩CΠΩ

. If d(D(PΠ3), D(PΠ1)) < δ,

rewards are (S(Π1)+S(Π3)
2

, S(Π2)− S(Π1)+S(Π3)
2

) and when d(D(PΠ3), D(PΠ1)) ≥ δ, rewards are

(S(Π1)+S(Π3)
2

− 2, S(Π2)− S(Π1)+S(Π3)
2

+ 2).

When the third partition does not shift the principal’s decision from the first beyond the

threshold amount, the first agent’s reward is equal to the average simplicity of their par-

titions. The second agent’s is simply the negative value of how much the decreased the

simplicity score from Π1. When the third partition does shift the principal’s decision suffi-

ciently far from the first, the first agent’s score is lowered by 2, making it lower than any

score they could receive if the decision does not shift, and the second agent’s score is higher.

We can show that this mechanism incentivizes both agents to report a partition in Π∗+.

Theorem 2. In the debate mechanism, an SPE exists, and in any SPE Π3 = Π2 = Π1 ∈ Π∗+.

Proof. We prove this with backward induction. Starting with Π3, the first agent’s score is

higher by 2 if d(D(PΠ3), D(PΠ1)) < δ. If (D(PΠ2), D(PΠ1)) < δ, then the agent will report

Π3 = Π2, as this is the simplest partition available in RΠ2 ∩ CΠΩ
, and will otherwise choose

among the simplest partitions that lead to a sufficiently close decision if any exist.

Knowing this and given Π1, the only way for the second agent to achieve their highest score
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of S(Π2)− S(Π1)+S(Π3)
2

+ 2 is to report Π2 ∈ RΠ1 ∩ CΠΩ
such that d(D(PΠ1), D(PΠ′)) ≥ δ for

all Π′ ∈ RΠ2∩CΠΩ
. In any SPE they will do so if that set is non-empty, choosing the simplest

among them. If there is no such partition, then the second agent will report Π2 = Π1, which

will get them a score of 0 once it triggers Π3 = Π2, higher than they would receive for any

other report as S(Π1) > S(Π′) for all Π′ ∈ R>
Π1
.

In anticipation of this behavior, the first agent will not report any Π1 ∈ CΠΩ
where ∃Π2 ∈ RΠ1

such that d(D(PΠ1), D(PΠ′)) ≥ δ for all Π′ ∈ RΠ2 ∩ CΠΩ
. Doing so would result in a score

for them of S(Π1)+S(Π3)
2

− 2 after later reporting Π3 = Π2, which is lower than the minimum

score of S(Π1)+S(Π3)
2

for any report where no such refinement exists. The first agent will then

optimize that score by choosing the simplest partition that meets the constraint and plan to

set Π3 = Π2. Any Π1 that has been so chosen is definitionally in Π∗+.

Given that the first agent will report some Π1 ∈ Π∗+, and there will not exist any refinements

for which all further refinements would change the action chosen to one a distance greater

than δ from D(PΠ1), the second agent will report Π2 = Π1, and the first agent will report

Π3 = Π2. This is an SPE, so one always exists, and if either agent does not follow this

behavior, it is not a SPE.

3.1.2 Simultaneous Elicitation

The second opinion mechanism and the debate mechanism are presented above as asymmetric

and sequential. This is based on the motivating case of having one agent review the work

of the other, which for some applications would be easier to implement. However, we can

also elicit partitions in Π∗ and Π∗+ simultaneously in equilibrium and symmetrically, when

doing so is more practical.

For the Π∗ case, consider the mechanism where agents report partitions Π1 and Π2 simulta-

neously. If S(Π1) = S(Π2), then scores are (0, 0). Otherwise, if S(Πi) > S(Πj), the second

opinion mechanism is run starting with agent i reporting Πi, and letting agent j respond

with a partition. Final scores are the scores from that second opinion mechanism, with
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S(Πj) subtracted from agent i’s final score and added to agent j’s final score. We call this

the simultaneous second opinion mechanism.

Theorem 3. In the simultaneous second opinion mechanism, an SPE exists, and in any

SPE Π1,Π2 ∈ Π∗ so that the second opinion mechanism is not triggered.

Proofs for this and later results are provided in Appendix A.

An analogous result holds for Π∗+, running the debate mechanism on the simpler parti-

tion instead of the second opinion mechanism, with an analogous proof. We call that the

simultaneous debate mechanism.

These mechanisms also have the useful property that they are zero-sum, making it impossible

for the agents to collaborate with each other. On the other hand, a downside of simultaneous

elicitation is that both agents can report different partitions in Π∗, even in equilibrium, which

would require the principal to evaluate a second distinct partition.

3.1.3 Memoryless Elicitation

An advantage of using an AI to simplify predictions is that they are memoryless, so a single

system can assume the roles of both experts, without introducing incentives for collusion.

To train an AI to do this, we would like to have all agents take the same kind of inputs,

produce the same kind of outputs, and be evaluated according to the same reward function.

To do this, we set Π0 = Πα, the maximal coarsening, such that is consists of a single outcome

occurring with probability 1. Agent i is shown Πi−1 and asked to produce a coarsening Πi.

If Πi−1 = Πi, the process ends, otherwise it proceeds to agent i+ 1.

To elicit a partition in Π∗, we can assign agent i a score of

S(Πi)−S(Πi−1)+I(d(D(PΠi−1
), D(PΠi

)) ≥ δ)[1+S(Πi−1)−I(d(D(PΠi
), D(PΠi+1

)) ≥ δ)[(1+S(Πi+1))]]
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If we force the process to stop after agent 2, then scores for agents 1 and 2 will be

((S(Π1)− (1 + S(Π2)) ∗ ⊮(d(D(PΠ1), D(PΠ2)) ≥ δ),

S(Π2)− S(Π1) + (1 + S(Π2)) ∗ ⊮(d(D(PΠ1), D(PΠ2)) ≥ δ)))

which creates the same incentives as the second opinion mechanism. As such, we call this

the memoryless second opinion mechanism.

Under the memoryless second opinion mechanism, when d(D(PΠi
), D(PΠi+1

)) ≥ δ, agent i

has their score drop by S(Πi+1), while agent i+1 has their score increase by S(Πi), for a total

score increase of S(Πi) − S(Πi+1). To prevent certain forms of potential collusion between

agents, the mechanism can be made zero-sum by subtracting this amount from either agent

i+ 2 or the final agent.

Theorem 4. In the memoryless second opinion mechanism, an SPE exists, and in any SPE

Πi,∈ Π∗ for all i.

To elicit a partition in Π∗+, we can assign agent i a score of

S(Πi)− S(Πi−1) + I(d(D(PΠi−1
), D(PΠi

)) ≥ δ)[1− I(d(D(PΠi
), D(PΠi+1

)) ≥ δ)]

If we force the process to stop after agent 3, and combine the scores for agent 1 and agent 3

(if they are reached), then scores for agents 1 and 2 will be

((S(Π1) + S(Π3)− S(Π2)− ⊮(d(D(PΠ1), D(PΠ2)) ≥ δ)[1− ⊮(d(D(PΠ2), D(P3)) ≥ δ)],

S(Π2)− S(Π1) + ⊮(d(D(PΠ1), D(PΠ2)) ≥ δ)[1− ⊮(d(D(PΠ2), D(P3)) ≥ δ)]), D(PΠ2)) ≥ δ)))

This creates the almost the same incentives as the debate mechanism, except that agent 3

only tries to change the decision away from D(PΠ2), rather than toward D(PΠ1)), which can

be easily changed if desired . As such, we call this the memoryless debate mechanism.
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The difference between these mechanisms is that the memoryless second opinion mechanism

rewards an additional S(Πi−1) for changing the decision sufficiently from the previous agent,

and subtracts an additional S(Πi+1) if the following agent changes the decision sufficiently.

The effect of this is that if both occur, the agent receives a score of S(Πi)− S(Πi+1), which

is greater than the 0 they would receive for reporting Πi = Πi−1. Under the memoryless

debate mechanism, the score for an agent who changes the decision and then has it changed

by the following agent is instead S(Πi)−S(Πi−1) < 0. So, agents will take into account that

subsequent agents will change the decision whenever possible under the memoryless second

opinion mechanism, but only when it cannot be changed further under the memoryless debate

mechanism.

3.2 Eliciting Simplified Predictions

So far, we have been assuming that an initial expert prediction PΩ on a partition ΠΩ is given.

However, predictions on Ω may not be provided, or even providable, due to their complexity.

Instead, we would like to directly elicit predictions in a simplified form.

When eliciting conditional predictions, those conditioned on untaken actions cannot be eval-

uated for accuracy. Hudson [2025] showed that when both agents have the same beliefs, it

is possible for the combination of a joint scoring rule and decision rule to be jointly quasi-

strictly proper, meaning that in every equilibrium the principal’s preferred action, denoted

a∗ is chosen, agents are strictly incentivized to report truthfully for the chosen action, and

weakly incentivized to report truthfully for unchosen actions.

To do this, after taking action D(P i, P j) and observing outcome ω the score for agent i ̸= j

is given by Si(P
i, P j, ω) = s(piD(P i,P j), ω)−s(pjD(P i,P j)

, ω), where s is a strictly proper scoring

rule, P i and P j are the sets of predictions made by agents i and j respectively. The principal

takes the action corresponding to the most preferred prediction across both agents, even if

they disagree for that action. While both agents predict simultaneously in that setup, it

does not affect their incentives to have them do so sequentially instead.
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The second opinion or debate mechanism can then be combined with a sequential version of

the Hudson [2025] mechanism to elicit quasi-strictly proper predictions over a partition in

Π∗ or Π∗+. However, this will only work for certain measures of simplicity. The simplicity

measure cannot change based on the predicted distributions for untaken actions, as this

would violate the weak incentive for honesty on untaken actions. Notably, the negative

of the number of elements in a partition is a simplicity measure that does not depend on

predictions for untaken actions.

Condition 1. S(Π1;P ) = S(Π1;P
′) If pD(P ),Π1 = p′D(P ′),Π1

then S(Π1;P ) = S(Π1;P
′) for

all P, P ′.

With continuous Ω, the principal may have preferences such that for any partition Π, there

exists a partition Π′ ∈ RΠ where d(D(PΠ), D(PΠ′)) ≥ δ. In that case, providing more

information never causes the principal’s decision to converge to a particular action, making

the question of what information is relevant meaningless. To rule this out, we add the

following condition:

Condition 2. For any prediction P and sequence of partitions {Πk}∞k=0 where for all n,

Πn+1 ∈ RΠn, there exists some N ∈ N such that for all n,m ≥ N , d(D(PΠm), D(PΠn)) ≤ δ

To elicit simplified predictions, the zero-sum second opinion mechanism works as follows.

First, agent 1 reports a partition, Π1 and an associated prediction P 1
Π1
. Agent 2 can then

either make a prediction P 2
Π1

over the same partition, or suggest a strict refinement Π2 ∈ R>
Π1

and make a prediction P 2
Π2

over it. If agent 2 provides a partition, agent 1 then provides a

prediction over it, P 1
Π2
. Once both agents have made predictions for the same partition, the

principal chooses the action corresponding to the prediction they most prefer across both

agents, denoted D(P 1, P 2).

The scores for the agents are broken down into a second opinion component and a prediction

component. The second opinion component of the score is the score the agents would receive
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from the second opinion mechanism, replacing D(PΠ2) with D(P 1
Π2
, P 2

Π2
), and treating the

case where the second agent responds with only a prediction as reporting Π2 = Π1.

The prediction component of the score is for agent i is αi(P
i, P j,D(P i, P j))(s(P i, ω) −

s(P j, ω)), where s is a strictly proper scoring rule and P i is the prediction that is made by

agent i over the same partition as agent j. αi is a function for scaling the prediction score,

so that the incentive for honesty dominates the incentives of the second opinion mechanism.

If predictions are made on Π1, then it takes on value 1, and if predictions are made on Π2

and piD(P i,P j) = pjD(P i,P j)
, then it takes on value 0. Otherwise,

αi(P
i, P j,D(P i, P j)) =

2

Eω∼pj
D(Pi,Pj)

[s(piD(P i,P j)
, ω)− s(pjD(P i,P j)

, ω)]
+ 1

This makes it so that the expected loss from making a dishonest prediction while the other

agent predicts honestly is greater than 1, which offsets any gain they could make by increasing

the apparent distance between actions.

When the above conditions hold, the zero-sum second opinion mechanism elicits quasi-strictly

proper prediction over a partition in Π∗.

Theorem 5. For the zero-sum second opinion mechanism under Conditions 1 and 2, a sub-

game perfect equilibrium (SPE) exists, and in any SPE agent 1 reports some Π1 ∈ Π∗, agent

2 responds with a prediction, D(P 1
Π1
, P 2

Π1
) = a∗Π1

, and both agents are strictly incentivized to

predict honestly for a∗Π1
and weakly incentivized to predict honestly for all actions.

An analogous result again holds for Π∗+, running the debate mechanism on the simpler

partition instead of the second opinion mechanism, with an analogous proof. We call that the

zero-sum debate mechanism. Much like the initial second-opinion and debate mechanisms,

the zero-sum versions can also be modified to be symmetric and simultaneous.
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4 Applications

In this section, we discuss possible applications for the mechanisms we introduce, with a

focus on the distance metrics and thresholds used to measure whether the principal changes

their mind sufficiently.

4.1 Stochastic Choice

The principal can only elicit predictions for a finite number of actions, but they may be able

to choose stochastically over that set, so that their choice is in ∆(A). Distance metrics can

then be defined between distributions over actions, such as Euclidian distance or Jensen-

Shannon distance.

In practice, even if the decision maker is making choices stochastically, they may be unable

to accurately report that distribution. To address this, we can instead use a prediction of

their action, elicited from a different expert. This is most plausible in the AI case, where an

AI predicting the decision can be consulted frequently and cheaply. Using an AI to predict

the decision is also important for training AI experts to simplify, as it makes changes in

decisions continuous, which allows for gradient-based optimization.

4.2 Social Choice

Where we typically think of a single decision making principal, there may be multiple decision

makers whose preferences are aggregated into a single decision. Then, distance metrics can

incorporate how many decision makers change their mind (and by how much) rather than

only applying to the overall aggregated decision. This is particularly helpful for identifying

”cruxes” between multiple decision makers, highlighting what the important considerations

are for each of them and allowing them to then discuss the exact issues that drive their

differences. This can also be used to specifically identify differences in values between decision

makers, isolating them from differences in beliefs about the likelihoods of various outcomes.

15



4.3 Histories and Non-Predictions

The outcomes being predicted are often the final states of the world, but the histories that

lead to them can also matter to the principal. In some cases, the history is not valued in

itself, but provides context on interpreting the final state. There is no issue with allowing

predictions over histories, rather than only final states.

These mechanisms can also be applied to deterministic histories, rather than predictions

which give a distribution over histories. This is the special case, where effectively the predic-

tion puts full probability on a single history. When this is done, the benefit is that agents are

incentivized to simplify the history to direct the principal’s attention to the relevant events

that occur.

4.4 Rating and Ranking

With predictions elicited over actions in A, the principal may wish to rate them or rank

them, and not merely choose the best. For example, rating actions provides more information

when done for reinforcement learning purposes, training an AI to take act in support of the

principal’s preferences. Distance metrics can then be applied to changes in ratings, taking

the mean or max change across actions. Rankings can be evaluated with metrics like Kendall

tau distance, or Spearman’s footrule distance.

4.5 Action Generation

Rather than providing partitions and possibly predictions over a given set of actions, the

mechanisms we discuss could be modified so that agents provide a finite set of actions

whenever they provide a partition. This would be helpful in cases where experts are aware

of actions that the principal would prefer, but that they had not thought of, such as when

there is a large space of actions to search through. For this application, the distance metrics

work as normal, and would be applied to the principal’s choice from a new set of actions.
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5 Discussion and Future Work

We have presented a number of mechanisms for using multiple experts to simplify predictions

for a decision maker. The mechanisms are generally not unique, and so it may be possible to

streamline them further, or modify them so that they display additional properties desirable

for some application. Our work outlines proofs of concept, showing that simplification is

possible and providing a concrete starting point for experimental testing.

Empirical evaluation to build on our theoretical results is currently ongoing. We divide our

experiments into eliciting simplified predictions, and using simplified predictions. Eliciting

simplified predictions is be tested straightforwardly, by having one Large Language Model

(LLM) decide between actions based on predictions of their outcomes that have been made

and simplified by another LLM. Preliminary results suggest that the using the second-opinion

mechanism and its variants as reward functions train LLMs to simplify predictions, but only

insofar as it continues to provide the decision maker with necessary information.

For experiments on the use of simplified predictions, we are particularly enthusiastic regard-

ing applications related to the predictions used in training LLMs. In an actor-critic setup,

an actor head on a neural network is trained to take actions that the critic head predict will

lead to high reward. However, the critic’s prediction is a single value, the average expected

reward. With our methods we can break the prediction down into uncertainty over out-

comes, and uncertainty over reward given an outcome. This would allow for either training

or constraining an LLM agent to take more conservative actions when it was significant un-

certainty as to what the outcome will be, as well as targeted value learning at the outcomes

where it is uncertain regarding reward.

Our work defining formal incentives for simplifying predictions bypasses an enormous restric-

tion on the use of predictions for decision making. From humans making better decisions

with the use of AI to provide information, to AI making better decisions based on being

more aligned to humans, this work has the potential for improving the crucial decisions that

will get made as our world becomes more integrated with powerful AI systems.
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Appendix A: Proofs

Theorem 3. In the simultaneous second opinion mechanism, an SPE exists, and in any

SPE Π1,Π2 ∈ Π∗ so that the second opinion mechanism is not triggered.

Proof. Without loss of generality, assume S(Π1) ≥ S(Π2) if S(Πi) > S(Πj). When the

second opinion game is played out starting with Π1, equilibrium scores are (S(Π1), 0) if there

does not exist Π′
2 ∈ RΠ1 ∩ CΠΩ

such that d(D(PΠ1), D(PΠ′
2
)) ≥ δ and (S(Π1) − 2, S(Π′

2) −

S(Π1) + 2) otherwise. As such, if S(Π1) > S(Π2) and Π1 ∈ Π∗, total scores will be (S(Π1)−

S(Π2), S(Π2) − S(Π1)), which cannot be an equilibrium as the second agent could increase

their score to 0 by instead reporting Π2 = Π1.

If S(Π1) > S(Π2) and Π1 ̸∈ Π∗, then either there exists Π′
2 ∈ RΠ1 ∩ CΠΩ

such that

d(D(PΠ1), D(PΠ′
2
)) ≥ δ or not. If there exists such a partition, then final scores will be

(S(Π1)− 2− S(Π2), S(Π
′
2) + 2 + S(Π2)), which cannot be an equilibrium as the first agent

could increase their score to 0 by reporting Π2 = Π1. If there does not exist such a partition,

then final scores will be (S(Π1)− S(Π2), S(Π2)− S(Π1)), where either Π2 ∈ Π∗ and agent 1

could increase their score to 0 by reporting Π2 = Π1 or Π2 ̸∈ Π∗ and agent 2 could increase

their score to by reporting Π2 ∈ Π∗. Either way, these cannot equilibria.

If S(Π1) = S(Π2) and Π1 ̸∈ Π∗, then if S(Π2) < S(Π′) for Π′ ∈ Π∗, agent 2 can increase their

score by reporting Π2 = Π′. If S(Π2) ≥ S(Π′) for Π′ ∈ Π∗, agent 2 can increase their score by

reporting Π2 ∈ R>
Π1

triggering the second opinion mechanism starting with Π1. Therefore,

neither of these can be equilibria.

Now we show that Π1,Π2 ∈ Π∗ are equilibria. For all Π′
i such that S(Π′

i) > S(Πi), by the

definition of Π∗ there exists Π′
j ∈ RΠ′

i
∩ CΠΩ

such that d(D(PΠi
), D(PΠ′

j
)) ≥ δ, so switching

would trigger the second opinion mechanism and result in a lower score. For all Π′
i such that

S(Π′
i) < S(Πi), switching results in a lower final score of S(Π′

i)−S(Πj). And for all Π′
i such

that S(Π′
i) = S(Πi) but Π′

i ̸∈ Π∗, switching results in the same final score of 0. As such,

there are no profitable deviations for either agent, making Π1,Π2 ∈ Π∗ equilibria, and since
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S(Π1) = S(Π2), the second opinion mechanism is not run.

Theorem 4. In the memoryless second opinion mechanism, an SPE exists, and in any SPE

Πi,∈ Π∗ for all i.

Theorem 5. For the zero-sum second opinion mechanism under Conditions 1 and 2, a sub-

game perfect equilibrium (SPE) exists, and in any SPE agent 1 reports some Π1 ∈ Π∗, agent

2 responds with a prediction, D(P 1
Π1
, P 2

Π1
) = a∗Π1

, and both agents are strictly incentivized to

predict honestly for a∗Π1
and weakly incentivized to predict honestly for all actions.

Proof. If agent 1 reports Π1 ∈ Π∗ with P 1
Π1

= µΠ1 , and P 1
Π2

= µΠ2 if necessary, then they

are guaranteed a score of at least S(Π1). If agent 2 reports P 2
Π1

= µΠ1 , they are guaranteed

a score of at least 0. So, in any equilibrium, both agents receive scores at least that high.

If agent 1 reports Π1 such that there exists some Π2 ∈ RΠ1 with d(D(PΠ1), D(PΠ2)) ≥ δ,

and agent 2 responds with such a partition and P 2
Π2

= µΠ2 , then the final score of agent 1

is capped at S(Π1) − 2. This is lower than if they had reported Π1 ∈ Π∗ with P 1
Π1

= µΠ1 ,

so cannot be an equilibrium. Agent 2 cannot achieve a higher score by responding with a

different partition and prediction, so if they do not it must be because they respond with only

a prediction P 2
Π1
, and their expected score from doing so is greater than 2− S(Π1) + S(Π2).

Then, agent 1’s score will be S(Π1)− [1−S(Π1)+S(Π2)] = 2S(Π1)−S(Π2)−2 < 0 < S(Π′
1)

for any Π′
1, so that also cannot be an equilibrium.

If agent 1 reports Π1 such that S(Π1) < S(Π′) for some Π′ ∈ Π∗, and there does not exist

some Π2 ∈ RΠ1 such that d(D(PΠ1), D(PΠ2)) ≥ δ, then the final score of agent 1 is capped

at S(Π1) < S(Π′
1) for any Π′

1 ∈ Π∗. This is because if it were higher, then agent 2 must

be receiving a score below 0, which cannot occur in equilibrium. As such, this cannot be

an equilibrium either, and so it must be that in any equilibrium, Π1 ∈ Π∗. If Π1 ∈ Π∗ but

D(P 1
Π1
) ̸= a∗Π1

, then agent 2 can maximize their score by reporting P 2
Π1

= µΠ1 , which as

shown in Hudson [2025] will lower agent 1’s total score below S(Π′) for some Π′ ∈ Π∗, so in

any equilibrium we also have that D(P 1
Π1
) = a∗Π1

.
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When agent 2 responds with a partition Π2 ∈ R>
Π1

and prediction P 2
Π2

= µΠ2 , agent 1’s

expected score is maximized with a prediction P 1
Π2

such that p1D(P 1
Π2

,P 2
Π2

),Π2
= p2D(P 1

Π2
,P 2

Π2
),Π2

.

For any such prediction, agent 2 will receive an expected score of S(Π2)−S(Π1) < 0, and so

that cannot be an equilibrium. If P 2
Π2

̸= µΠ2 , then if there exists P 1
Π2

such that D(P 1
Π2
, P 2

Π2
) =

a∗Π1
and Eµ[αi(P

1
Π2
, P 2

Π2
,D(P 1

Π2
, P 2

Π2
))s(P 1

Π2
, ω) − s(P 2

Π2
, ω)] > 0 or D(P 1

Π2
, P 2

Π2
) ̸= a∗Π1

but

Eµ[αi(P
1
Π2
, P 2

Π2
,D(P 1

Π2
, P 2

Π2
))s(P 1

Π2
, ω) − s(P 2

Π2
, ω)] > 2, agent 1 will take such an action. If

they do, agent 2 will receive an expected score lower than S(Π2)−S(Π1) < 0, so this cannot

be an equilibrium. As such, in any equilibrium, agent 2 does not respond with a partition.

If agent 2 responds with a prediction, then as shown in Hudson [2025], we will have that

in any equilibrium D(P 1
Π1
, P 2

Π1
) = a∗Π1

and p1D(P 1
Π1

,P 2
Π1

),Π1
= p2D(P 1

Π1
,P 2

Π1
),Π1

= µΠ1 . The above

shows that this is an equilibrium, as any deviation induces a subgame resulting in a lower

score for the deviator.
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