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Abstract

When a principal faces a choice between actions, deciding based on expert predictions
of outcomes can still require the principal to expend large amounts of cognitive effort
processing them. We investigate mechanisms by which the principal can incentivize an
agent to simplify the predictions, while still guiding the principal to their best action.
Our focus is on the use of Al agents, which can allow approaches beyond what is pos-
sible with humans. We first show that this can be done with a setup using two agents.
This is done by rewarding the second agent for providing additional information that
sufficiently changes the principal’s decision, where the principal controls the bar for
sufficiency. We then show how to adapt the mechanism to elicit a prediction in simpli-
fied form, for cases where the set of possible outcomes is very large or continuous.
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1 Introduction

When making a decision between possible courses of action, a common step is predict the
likely outcomes under each. For important decisions outside of our normal expertise, we may
consult an expert and use their predictions instead of or in addition to our own. However,
this introduces the issue of prediction complexity. While it is possible to incentivize accurate
predictions from an expert using a proper scoring rule [Brier, 1950, Good, |1952] regardless of
the number of possible outcomes, for a complicated prediction it can be difficult to identify
what the relevant outcomes should be. In a setting with ten possible outcome variables that
can each take ten possible values, which is far simpler than the real world, predictions over
the resulting 10'° outcomes are far too large to evaluate. To avoid the extensive process of
considering all outcomes, we might want either the expert who provided the prediction or
some independent agent to simplify the prediction on our behalf.

To illustrate, consider the case of a patient at the hospital with appendicitis, choosing be-
tween undergoing an appendectomy or treating it with antibiotics. Based on the patient’s
characteristics, a medical professional can predict the likelihood of various outcomes given
each course of treatment. However, surgery and antibiotics have dozens of potential side
effects, many of which have several degrees of severity. Even if the medical professional
could convey their prediction over all outcomes to the patient, the combinatorially large
size would be overwhelming. Rather, the patient would prefer that outcomes be clustered
together, such as those with side effects of similar type, severity, and/or time frame.
Suppose that a principal hires an agent to simplify a prediction by grouping together out-
comes, where simplicity is measured with some function that strictly increases in value when
any two outcomes are merged. This function might depend on the actual probabilities in-
volved, so that merging two outcomes that each have high probability affects simplicity
differently than merging two outcomes that each have low probability. If the agent is re-
warded only for simplicity, the optimal report is a single group containing all outcomes.

The principal would then be choosing with no information, which could result in taking a



suboptimal or even catastrophic action.

What the principal would prefer is to simplify the prediction only insofar as it allows them to
still choose their best action, the one which they would take if they spent the effort to process
the full information. However, if the outcome space is large enough that simplification is
useful, it will usually be too large to contract over, meaning the principal cannot align the

agent by rewarding them proportionally to the value of the outcome realized.

1.1 Owur Contribution

Our results show that while a single agent cannot be incentivized to provide the simplest
grouping that leads to the best action, using two agents can achieve this outcome. To do
so, once the first agent has provided a simplified grouping of outcomes, the principal allows
the other agent to provide a ‘second opinion’. If the second agent can further split outcomes
in a way that changes the principal’s choice of action, the second agent is rewarded and the
first is punished. This makes it so that the first agent is incentivized to simplify the original
prediction only insofar as it does not change the principal’s decision. Following up on this
mechanism, we provide additional results showing that we can elicit further simplification
while still choosing the optimal action with a mechanism that allows the first agent to reply,
and that either mechanism can be modified to be made symmetric and/or simultaneous.

We then examine the case where there does not exist an expert prediction to be simplified,
but rather one must be elicited in simplified form. In many applications, the set of outcomes
to be predicted over is too large for an expert to provide a prediction on, notably the cases
where outcome variables take on continuous values. While the principal can decide on the
set of outcomes before eliciting predictions, this may cause them to miss crucial information
that experts are aware of. Instead, we would like the expert, who knows all the relevant
information, to come up with the ideal simplification of outcomes and report the probabilities
over that set. We show how the previous mechanism can be modified so that this outcome

is incentivized.



1.2 Literature Review

The literature on eliciting predictions over a set of outcomes is extensive, starting with |Brier],
1950] and [Good, 1952]. [Gneiting and Raftery, 2007] establishes properties that apply to all
(strictly) proper scoring rules, which are defined as those that (strictly) incentivize reporting
actual beliefs.

Eliciting multiple conditional predictions from a single expert for use in making decisions
was investigated by [Othman and Sandholm, [2010], who showed that because predictions
for untaken actions cannot be evaluated, it is impossible to use predictions from a single
agent to deterministically identify and take the best action available. Follow-up work |[Chen
et al., 2011} Oesterheld and Conitzer, |2020] found partial workarounds in the single expert
case, and |[Hudson| 2025] showed that multiple agents in a zero-sum competition can be
incentivized in a way that circumvents the impossibility result. While these papers use a
similar model to our proposed research direction, they focus on eliciting accurate predictions
rather than simplifying them. To our knowledge, we are the first to explore the direction of
simplifying prediction.

The rational inattention literature, starting with [Sims [2003], models individuals as having
a limited capacity to process information, and needing to allocate their attention efficiently.
Gabaix|[2014] connected this model to broader theories of bounded rationality, while Matéjka
and McKay| [2015] applied it to a discrete choice model. The rational inattention literature
is descriptive, aiming to model how humans typically act, rather than prescriptive like our
work. However, it provides powerful motivation, showing that there is a need for predictions
to be simplified before they can be used in decision making. The novelty of our approach is
in using an outside agent for this simplification.

The mechanism of rewarding agents for changing the principal’s mind appeared in Grace
[2014], which suggested that applying it repeatedly would converge to the truth. Debate
between two agents under the same assumption that the truth will eventually converge was

explored by [rving et al.[[2018]. Our proposed work differs in that arguments are restricted to



be true simplifications of a set of predictions, and that the reward for changing the principal’s
mind only applies off the equilibrium path.

Early work by Blackwell [1951] established a foundation for comparing information struc-
tures, showing that one is more informative than another if and only if it leads to better
decisions for any decision problem and preferences. In contrast, our work is aimed at eliciting
the information structure that leads to the best decision for a specific decision problem and
preferences, and penalizes the more complex information structures that help with others.
The closest paper to our work is [Lipnowski et al.| [2020], which modeled the case where a
principal without attention cost summarizes information for a decision making agent with
attention costs. They focus on the case that the principal and the agent share the same
utility function over outcomes, while our interest is the case where the decision maker can

set the utility function of the summarizer but cannot contract over their full utility function.

2 Model

Let A be a finite set of actions, and let 2 be an exhaustive and mutually exclusive set of
outcomes. A partition I of a set X is a finite collection Y = {y1,...,yx} of nonempty,
pairwise disjoint subsets with U?:l y; = X. Given two partitions of X, denoted II; and Iy,
we say Iy is a coarsening of 1I; (and II; is a refinement of Ily) if every element of II; is
wholly contained in some element of Il;. That is, for each 7 € II;, there exists m € Il; such
that m; C my. A coarsening is strict if |TIo| < |II1|, and a refinement is strict if |[I1;] < [TIo].
Let Cp denote all coarsenings of II and Cj the strict ones. Similarly, let Ry denote all
refinements of IT and Ry the strict ones. We abuse notation slightly and let Cq denote the
set of all partitions of €.

Given a partition IT of 2, a set of conditional predictions P € A(IT)l consists of a prediction
pa € A(II) for each a € A. The probability assigned to outcome 7 € II conditional on action

a is denoted p, .. For Il € Cp, and prediction P on Il we let Py, denote the set of



predictions over IIo where p, -, = Zn@rc Da.r-

We have two agents, denoted 1 and 2, who are risk-neutral, and are interested in a reward
that can be costlessly provided by the principal. These agent preferences are standard for
prediction scoring rules. Both agents have beliefs p € A(Q) regarding the distribution of
outcomes, with u, denoting the distribution conditional on action a. When agent ¢ reports
a partition, it is denoted II;, and when they report a prediction, it is denoted P.

The simplicity of a partition Il € Cq is measured by a simplicity function S : Cq — R
that is strictly monotone with coarsening: if Il € Cp, then S(Ily) > S(II;), with strict
inequality when Il € Cg . Two examples are (i) cardinality-based Sca;a(I1) = —|II|, and (ii)
entropy-based Sent(IL; P) = 3, 4 D rer Por 108 Py (log base 2 is used for Shannon entropy).

Without loss of generality, we let S have range [0, 1], which can be accomplished by applying

1

the sigmoid function o(r) = =

We also have a distance metric between actions, d : A x A — R, and a threshold § > 0 for
how different actions must be for that difference to be relevant. By default, we think of this
as the discrete metric, such that d(z,y) = 0 if x = y and 0 otherwise, but some applications
suggest a natural metric for distance.

Finally, we have a decision-making principal with complete and transitive preferences =~ over
UHECQ A(II), i.e., over all distributions induced by possible partitions of €. For simplicity,
we assume a tie-breaking procedure (including across actions yielding the same distribution),
so preferences are strict. Let D : Upce, A(IH — A map a set of conditional predictions
to the action corresponding to the most preferred distribution. Agents are assumed to know

the principal’s preferences, since the principal will not want to conceal them.



3 Results

3.1 Simplifying Predictions

We first analyze the case where an initial expert prediction P, on a partition Ilg is given.
The principal would like to be provided with the simplest information set such that no
additional information will change their choice of action to one with a distance greater than
0. Under the discrete distance metric, this is accomplished with the simplest partition II
such that d(D(Pr,), D(Pn)) < 6 for all [Tz € Ri. We will call the set of all such partitions
IT*, noting that there may be multiple tied for the simplest.

It is straightforward to argue that no scoring rule can always incentivize an expert to provide
a partition in IT*. For some predictions, the optimal partition would be the maximal coarsen-
ing, which groups all outcomes together, if the principal’s decision upon seeing that happens
to be correct. However, upon receiving such a partition from an expert, the principal has no
way to evaluate whether it is in IT*. Any scoring rule that incentivizes reporting it therefore
does so independently of whether it is in II*, and so cannot incentivize only reporting it in
that case.

Fortunately, we can show that what we cannot incentivize from a single expert, we can

incentivize from a pair of experts.

3.1.1 Sequential Elicitation

To elicit a partition in IT*, consider the following setup, which we call the second opinion
mechanism. First, agent 1 provides a partition II; € Cp,,. Then, agent 2 provides a refine-
ment, Iy € Ry, N Cny,. If d(D(Py,), D(Pr,)) < 0, rewards are (S(IIy), S(Ily) — S(I1;)), and
if d(D(Pr,), D(Pr,)) > § then rewards are (S(I1;) —2, S(Ily) — S(I1;) +2). As the principal’s
actual decision does not affect the incentives of the agents, we can leave their implemented
choice when D(Py,) # D(Pn,) undetermined. It is not necessary to subtract S(II;) from the

score of agent 2 here, or change scores by 2 instead of 1 when the decision shifts sufficiently,



but it becomes helpful in later extensions.

When the second partition does not shift the principal’s decision beyond the threshold
amount, the first agent’s reward is equal to the simplicity of the partition they provided,
while the second agent’s is the negative value of how much their partition decreases the sim-
plicity score from IIy. If the second agent does not shift the decision, their strictly highest
scoring report in Ry, is II; = II;, which avoids the need to evaluate a second partition.
When the second partition does sufficiently shift the principal’s decision, the first agent’s
score drops by 2, making it lower than any score they could receive if the decision does not
shift by at least d, while the second agent’s score is higher.

We can show that this mechanism incentivizes both agents to report a partition in IT*.

Theorem 1. In the second opinion mechanism, a subgame perfect equilibrium (SPE) exists,

and in any SPE 11, = 11, € IT*.

Proof. We prove this with backward induction over the game tree. Given II;, the only
way for the second agent to achieve their highest score of S(Ily) — S(I1;) + 2 is to report
IIy € R, N Cn,, such that d(D(Pr,), D(Pu,)) > 9. In any SPE they will do so if that set is
non-empty. If there is no such partition, then the second agent will report II; = Il;, which
gets them a score of 0, higher than they would receive for any other report as S(I1;) > S(II')
for all II" € Ry, .

In anticipation of this behavior, the first agent will not report any II; € Cr, where JII, € Ry,
such that d(D(P,), D(Pr,)) > d. Doing so would result in a score below 0, lower than the
minimum score for any partition where no such refinement exists. As reporting any other
IT; will give the first agent a score of S(II;), the first agent will optimize that score by
choosing the simplest partition that meets the constraint. Any II; that has been so chosen
is definitionally in IT*.

Given that the first agent will report some II; € II*,and there will not exist any refinements
which would change the action chosen to one a distance greater than § from D(Py,), the

second agent will report Iy = II;. This is an SPE, so one always exists, and if either agent



does not follow this behavior, it is not a SPE. O

In addition to incentivizing the simplest partition such that the choice of action will be within
0 of the choice induced by any refinements, we may also be interested in the looser condition
of the choice of action being within 6 of D(Pp,). In this case, it would be acceptable if
refinement would lead to a very different decision, so long as further refinement would bring
it back. This is done with the simplest partition II such that d(D(Py,,), D(Pn)) < 6. The
set of all such partitions will be called IT**, noting again that there may be multiple tied for
the simplest.

To elicit a partition in IT**, consider the following setup, which we call the debate mechanism.
First, agent 1 provides a partition II; € Cy. Then agent 2 provides a refinement Iy €
R, NCr,,. Finally, agent 1 provides a refinement I3 € Ry, NCr,. If d(D(Pr,), D(Pr,)) < 9,
rewards are (w, S(I1p) — W) and when d(D(Pr,), D(Pp,)) > 6, rewards are
(S(Hl);rS(HS) —2,5(I1,) — S(Hl);S(Hg) +2).

When the third partition does not shift the principal’s decision from the first beyond the
threshold amount, the first agent’s reward is equal to the average simplicity of their par-
titions. The second agent’s is simply the negative value of how much the decreased the
simplicity score from II;. When the third partition does shift the principal’s decision suffi-
ciently far from the first, the first agent’s score is lowered by 2, making it lower than any
score they could receive if the decision does not shift, and the second agent’s score is higher.

We can show that this mechanism incentivizes both agents to report a partition in IT**.
Theorem 2. In the debate mechanism, an SPE exists, and in any SPE 113 = 11, = II; € II**.

Proof. We prove this with backward induction. Starting with II3, the first agent’s score is
higher by 2 if d(D(Py,), D(Pr,)) < 6. If (D(Pny,), D(Pr,)) < 0, then the agent will report
I3 = Il,, as this is the simplest partition available in Ry, N Cr,,, and will otherwise choose
among the simplest partitions that lead to a sufficiently close decision if any exist.

Knowing this and given II, the only way for the second agent to achieve their highest score



of S(Il,) — w + 2 is to report Ily € Ry, N Cry, such that d(D (P, ), D(Pw)) > 6 for
all I" € Ry, NCry,. In any SPE they will do so if that set is non-empty, choosing the simplest
among them. If there is no such partition, then the second agent will report Iy = II;, which
will get them a score of 0 once it triggers II3 = II,, higher than they would receive for any
other report as S(II;) > S(II') for all I" € Ry, .

In anticipation of this behavior, the first agent will not report any II; € Cr, where JIl, € Ry,
such that d(D(Pu,), D(Pw)) > 6 for all I € Ry, N Cr,. Doing so would result in a score

for them of w — 2 after later reporting II3 = Ily, which is lower than the minimum

score of w for any report where no such refinement exists. The first agent will then

optimize that score by choosing the simplest partition that meets the constraint and plan to
set IT3 = II,. Any II; that has been so chosen is definitionally in IT**.

Given that the first agent will report some I1; € IT*", and there will not exist any refinements
for which all further refinements would change the action chosen to one a distance greater
than ¢ from D(Py,), the second agent will report Il = II;, and the first agent will report
[I3 = II;. This is an SPE, so one always exists, and if either agent does not follow this

behavior, it is not a SPE. O

3.1.2 Simultaneous Elicitation

The second opinion mechanism and the debate mechanism are presented above as asymmetric
and sequential. This is based on the motivating case of having one agent review the work
of the other, which for some applications would be easier to implement. However, we can
also elicit partitions in IT* and IT** simultaneously in equilibrium and symmetrically, when
doing so is more practical.

For the II* case, consider the mechanism where agents report partitions II; and IIy simulta-
neously. If S(II;) = S(Ily), then scores are (0,0). Otherwise, if S(II;) > S(II;), the second
opinion mechanism is run starting with agent i reporting II;, and letting agent j respond

with a partition. Final scores are the scores from that second opinion mechanism, with



S(IL;) subtracted from agent 4’s final score and added to agent j’s final score. We call this

the simultaneous second opinion mechanism.

Theorem 3. In the simultaneous second opinion mechanism, an SPE exists, and in any

SPE 11,11, € IT* so that the second opinion mechanism is not triggered.

Proofs for this and later results are provided in Appendix A.

An analogous result holds for IT**, running the debate mechanism on the simpler parti-
tion instead of the second opinion mechanism, with an analogous proof. We call that the
simultaneous debate mechanism.

These mechanisms also have the useful property that they are zero-sum, making it impossible
for the agents to collaborate with each other. On the other hand, a downside of simultaneous
elicitation is that both agents can report different partitions in II*, even in equilibrium, which

would require the principal to evaluate a second distinct partition.

3.1.3 Memoryless Elicitation

An advantage of using an Al to simplify predictions is that they are memoryless, so a single
system can assume the roles of both experts, without introducing incentives for collusion.
To train an Al to do this, we would like to have all agents take the same kind of inputs,
produce the same kind of outputs, and be evaluated according to the same reward function.
To do this, we set II; = I1,,, the maximal coarsening, such that is consists of a single outcome
occurring with probability 1. Agent 7 is shown II;_; and asked to produce a coarsening II;.
If TI;_; = II;, the process ends, otherwise it proceeds to agent i + 1.

To elicit a partition in II*, we can assign agent i a score of

SIL)=SILi1)+d(D (P, ), D(Pr;)) 2 0)[14S (i) =I(d(D( Py, ), D(Pu;y,)) 2 0)[(145(Iig1))]

i

10



If we force the process to stop after agent 2, then scores for agents 1 and 2 will be

((S(Iy) = (1 + S(Ily)) * K (d(D(Pr,), D(Ph,)) = 9),

S(Ily) = S(Iy) + (1 + S(Ily)) + ¥ (d(D(Pr, ), D(Pi,)) = 6)))

which creates the same incentives as the second opinion mechanism. As such, we call this
the memoryless second opinion mechanism.

Under the memoryless second opinion mechanism, when d(D(Py,), D(Pu,,,)) > 6, agent ¢
has their score drop by S(I1;11), while agent i+ 1 has their score increase by S(Il;), for a total
score increase of S(II;) — S(II;41). To prevent certain forms of potential collusion between
agents, the mechanism can be made zero-sum by subtracting this amount from either agent

1+ 2 or the final agent.

Theorem 4. In the memoryless second opinion mechanism, an SPE exists, and in any SPE

I1;, € IT* for all 1.

To elicit a partition in IT**, we can assign agent ¢ a score of

S(IL;) = S(Mi1) + 1(d(D(Pu,_, ), D(Pr,)) = 0)[1 = (d(D(Pr,), D(P,y,)) = 0)]

If we force the process to stop after agent 3, and combine the scores for agent 1 and agent 3

(if they are reached), then scores for agents 1 and 2 will be

((S(IL) + S(Is) — S(Ilz) = ¥(d(D(Pr,), D(Pr,)) = 0)[1 =¥ (d(D(P,), D(Fs)) = 0)],

S(Ily) — S(Iy) +H(d(D(Py,), D(Pu,)) 2 6)[1 = W(d(D(Pr,), D(Ps)) = 6)]), D(Pu,)) = 9)))

This creates the almost the same incentives as the debate mechanism, except that agent 3
only tries to change the decision away from D(FPy,), rather than toward D(Pr,)), which can

be easily changed if desired . As such, we call this the memoryless debate mechanism.

11



The difference between these mechanisms is that the memoryless second opinion mechanism
rewards an additional S(II;_1) for changing the decision sufficiently from the previous agent,
and subtracts an additional S(II;; ;) if the following agent changes the decision sufficiently.
The effect of this is that if both occur, the agent receives a score of S(II;) — S(Il;41), which
is greater than the 0 they would receive for reporting II; = II;_;. Under the memoryless
debate mechanism, the score for an agent who changes the decision and then has it changed
by the following agent is instead S(II;) — S(II;—1) < 0. So, agents will take into account that
subsequent agents will change the decision whenever possible under the memoryless second
opinion mechanism, but only when it cannot be changed further under the memoryless debate

mechanism.

3.2 Eliciting Simplified Predictions

So far, we have been assuming that an initial expert prediction Py on a partition Il is given.
However, predictions on {2 may not be provided, or even providable, due to their complexity.
Instead, we would like to directly elicit predictions in a simplified form.

When eliciting conditional predictions, those conditioned on untaken actions cannot be eval-
uated for accuracy. Hudson, [2025] showed that when both agents have the same beliefs, it
is possible for the combination of a joint scoring rule and decision rule to be jointly quasi-
strictly proper, meaning that in every equilibrium the principal’s preferred action, denoted
a* is chosen, agents are strictly incentivized to report truthfully for the chosen action, and
weakly incentivized to report truthfully for unchosen actions.

To do this, after taking action D(P?, P?) and observing outcome w the score for agent i # j
is given by S;(P*, P/, w) = s(piD(Pi’Pj), w)— s(p%(Pi,Pj), w), where s is a strictly proper scoring
rule, P* and P/ are the sets of predictions made by agents i and j respectively. The principal
takes the action corresponding to the most preferred prediction across both agents, even if

they disagree for that action. While both agents predict simultaneously in that setup, it

does not affect their incentives to have them do so sequentially instead.

12



The second opinion or debate mechanism can then be combined with a sequential version of
the Hudson| [2025] mechanism to elicit quasi-strictly proper predictions over a partition in
IT* or IT**. However, this will only work for certain measures of simplicity. The simplicity
measure cannot change based on the predicted distributions for untaken actions, as this
would violate the weak incentive for honesty on untaken actions. Notably, the negative
of the number of elements in a partition is a simplicity measure that does not depend on

predictions for untaken actions.

Condition 1. S(Ily; P) = S(IL; ') If ppp)my, = Ppprym, then S P) = S(ILy; P') for
all P, P'.

With continuous €2, the principal may have preferences such that for any partition II, there
exists a partition II' € Ry where d(D(Py), D(Pw)) > 6. In that case, providing more
information never causes the principal’s decision to converge to a particular action, making
the question of what information is relevant meaningless. To rule this out, we add the

following condition:

Condition 2. For any prediction P and sequence of partitions {Il;}32, where for all n,

II,,+1 € Ru,,, there exists some N € N such that for all n,m > N, d(D(Py,,), D(P,)) < 0

To elicit simplified predictions, the zero-sum second opinion mechanism works as follows.
First, agent 1 reports a partition, II; and an associated prediction Pﬁl. Agent 2 can then
either make a prediction Pl?Il over the same partition, or suggest a strict refinement II, € Ry,
and make a prediction Pﬁz over it. If agent 2 provides a partition, agent 1 then provides a
prediction over it, Pﬁ,}. Once both agents have made predictions for the same partition, the
principal chooses the action corresponding to the prediction they most prefer across both
agents, denoted D(P', P?).

The scores for the agents are broken down into a second opinion component and a prediction

component. The second opinion component of the score is the score the agents would receive

13



from the second opinion mechanism, replacing D(Py,) with D(P},, Pj,), and treating the
case where the second agent responds with only a prediction as reporting I, = II;.

The prediction component of the score is for agent i is «;(P%, P/, D(P?, P7))(s(P*, w) —
s(P’,w)), where s is a strictly proper scoring rule and P is the prediction that is made by
agent ¢ over the same partition as agent j. «; is a function for scaling the prediction score,
so that the incentive for honesty dominates the incentives of the second opinion mechanism.
If predictions are made on II;, then it takes on value 1, and if predictions are made on Il

and p%(P%P,-) = ij(Pi’Pj), then it takes on value 0. Otherwise,

2

EWNp;D(Pi’Pj) [S(piD(Pi’Pjy w) — S(p]D(pi,Pjy w)]

+1

ai(Pi7Pj7D(Pi>Pj)) =

This makes it so that the expected loss from making a dishonest prediction while the other
agent predicts honestly is greater than 1, which offsets any gain they could make by increasing
the apparent distance between actions.

When the above conditions hold, the zero-sum second opinion mechanism elicits quasi-strictly

proper prediction over a partition in IT*.

Theorem 5. For the zero-sum second opinion mechanism under Conditions[]] and[g, a sub-
game perfect equilibrium (SPE) exists, and in any SPE agent 1 reports some I1; € II*, agent
2 responds with a prediction, D(P} , P§,) = ajy,, and both agents are strictly incentivized to

predict honestly for ay, and weakly incentivized to predict honestly for all actions.

An analogous result again holds for IT**, running the debate mechanism on the simpler
partition instead of the second opinion mechanism, with an analogous proof. We call that the
zero-sum debate mechanism. Much like the initial second-opinion and debate mechanisms,

the zero-sum versions can also be modified to be symmetric and simultaneous.
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4 Applications

In this section, we discuss possible applications for the mechanisms we introduce, with a
focus on the distance metrics and thresholds used to measure whether the principal changes

their mind sufficiently.

4.1 Stochastic Choice

The principal can only elicit predictions for a finite number of actions, but they may be able
to choose stochastically over that set, so that their choice is in A(.A). Distance metrics can
then be defined between distributions over actions, such as Euclidian distance or Jensen-
Shannon distance.

In practice, even if the decision maker is making choices stochastically, they may be unable
to accurately report that distribution. To address this, we can instead use a prediction of
their action, elicited from a different expert. This is most plausible in the Al case, where an
AT predicting the decision can be consulted frequently and cheaply. Using an Al to predict
the decision is also important for training Al experts to simplify, as it makes changes in

decisions continuous, which allows for gradient-based optimization.

4.2 Social Choice

Where we typically think of a single decision making principal, there may be multiple decision
makers whose preferences are aggregated into a single decision. Then, distance metrics can
incorporate how many decision makers change their mind (and by how much) rather than
only applying to the overall aggregated decision. This is particularly helpful for identifying
"cruxes” between multiple decision makers, highlighting what the important considerations
are for each of them and allowing them to then discuss the exact issues that drive their
differences. This can also be used to specifically identify differences in values between decision

makers, isolating them from differences in beliefs about the likelihoods of various outcomes.
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4.3 Histories and Non-Predictions

The outcomes being predicted are often the final states of the world, but the histories that
lead to them can also matter to the principal. In some cases, the history is not valued in
itself, but provides context on interpreting the final state. There is no issue with allowing
predictions over histories, rather than only final states.

These mechanisms can also be applied to deterministic histories, rather than predictions
which give a distribution over histories. This is the special case, where effectively the predic-
tion puts full probability on a single history. When this is done, the benefit is that agents are
incentivized to simplify the history to direct the principal’s attention to the relevant events

that occur.

4.4 Rating and Ranking

With predictions elicited over actions in A, the principal may wish to rate them or rank
them, and not merely choose the best. For example, rating actions provides more information
when done for reinforcement learning purposes, training an Al to take act in support of the
principal’s preferences. Distance metrics can then be applied to changes in ratings, taking
the mean or max change across actions. Rankings can be evaluated with metrics like Kendall

tau distance, or Spearman’s footrule distance.

4.5 Action Generation

Rather than providing partitions and possibly predictions over a given set of actions, the
mechanisms we discuss could be modified so that agents provide a finite set of actions
whenever they provide a partition. This would be helpful in cases where experts are aware
of actions that the principal would prefer, but that they had not thought of, such as when
there is a large space of actions to search through. For this application, the distance metrics

work as normal, and would be applied to the principal’s choice from a new set of actions.
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5 Discussion and Future Work

We have presented a number of mechanisms for using multiple experts to simplify predictions
for a decision maker. The mechanisms are generally not unique, and so it may be possible to
streamline them further, or modify them so that they display additional properties desirable
for some application. Our work outlines proofs of concept, showing that simplification is
possible and providing a concrete starting point for experimental testing.

Empirical evaluation to build on our theoretical results is currently ongoing. We divide our
experiments into eliciting simplified predictions, and using simplified predictions. Eliciting
simplified predictions is be tested straightforwardly, by having one Large Language Model
(LLM) decide between actions based on predictions of their outcomes that have been made
and simplified by another LLM. Preliminary results suggest that the using the second-opinion
mechanism and its variants as reward functions train LLMs to simplify predictions, but only
insofar as it continues to provide the decision maker with necessary information.

For experiments on the use of simplified predictions, we are particularly enthusiastic regard-
ing applications related to the predictions used in training LLMs. In an actor-critic setup,
an actor head on a neural network is trained to take actions that the critic head predict will
lead to high reward. However, the critic’s prediction is a single value, the average expected
reward. With our methods we can break the prediction down into uncertainty over out-
comes, and uncertainty over reward given an outcome. This would allow for either training
or constraining an LLM agent to take more conservative actions when it was significant un-
certainty as to what the outcome will be, as well as targeted value learning at the outcomes
where it is uncertain regarding reward.

Our work defining formal incentives for simplifying predictions bypasses an enormous restric-
tion on the use of predictions for decision making. From humans making better decisions
with the use of Al to provide information, to AI making better decisions based on being
more aligned to humans, this work has the potential for improving the crucial decisions that

will get made as our world becomes more integrated with powerful Al systems.
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Appendix A: Proofs

Theorem 3. In the simultaneous second opinion mechanism, an SPE exists, and in any

SPE 114,11, € II* so that the second opinion mechanism is not triggered.

Proof. Without loss of generality, assume S(II;) > S(IIy) if S(II;) > S(II;). When the
second opinion game is played out starting with I1;, equilibrium scores are (S(Il;), 0) if there
does not exist II; € Ry, N Cn, such that d(D(Pr,), D(Pry)) > § and (S(IL) — 2, S(T15) —
S(IT;) + 2) otherwise. As such, if S(I1;) > S(I,) and II; € IT*, total scores will be (S(IIy) —
S(I1p), S(Ily) — S(I1)), which cannot be an equilibrium as the second agent could increase
their score to 0 by instead reporting II, = II;.

If S(ITI;) > S(Ily) and II; ¢ II*, then either there exists II, € Ry, N Cr, such that
d(D(Pu,), D(Pry)) > 6 or not. If there exists such a partition, then final scores will be
(S(I1y) — 2 — S(Ily), S(IT}) + 2 + S(II2)), which cannot be an equilibrium as the first agent
could increase their score to 0 by reporting I, = II;. If there does not exist such a partition,
then final scores will be (S(II;) — S(Ilp), S(IIy) — S(II1)), where either 1T, € IT* and agent 1
could increase their score to 0 by reporting Il = II; or Il ¢ IT* and agent 2 could increase
their score to by reporting Il; € IT*. Either way, these cannot equilibria.

If S(II;) = S(Ily) and II; & IT*, then if S(IIy) < S(IT') for IT" € IT*, agent 2 can increase their
score by reporting I, = IT. If S(Ily) > S(II') for I € II*, agent 2 can increase their score by
reporting Il € Ry, triggering the second opinion mechanism starting with II;. Therefore,
neither of these can be equilibria.

Now we show that II;, Iy € ITI* are equilibria. For all IT; such that S(II}) > S(II;), by the
definition of II* there exists II} € Ry, N C,, such that d(D(Py,), D(Py;)) = 6, so switching
would trigger the second opinion mechanism and result in a lower score. For all II; such that
S(IT}) < S(IL;), switching results in a lower final score of S(II;) — S(II;). And for all I} such
that S(IT}) = S(IL;) but II; & IT*, switching results in the same final score of 0. As such,

there are no profitable deviations for either agent, making II;, II, € II* equilibria, and since
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S(IT;) = S(Ily), the second opinion mechanism is not run. O

Theorem 4. In the memoryless second opinion mechanism, an SPFE exists, and in any SPE

IL;, € IT* for all i.

Theorem 5. For the zero-sum second opinion mechanism under Conditions[1] and[2, a sub-
game perfect equilibrium (SPE) exists, and in any SPE agent 1 reports some 11; € 1I*, agent
2 responds with a prediction, D(Pﬁl, Przh) = afy,, and both agents are strictly incentivized to

predict honestly for ay, and weakly incentivized to predict honestly for all actions.

Proof. If agent 1 reports II; € IT* with Py, = pp,, and Py, = pr, if necessary, then they
are guaranteed a score of at least S(II;). If agent 2 reports Pj, = i, they are guaranteed
a score of at least 0. So, in any equilibrium, both agents receive scores at least that high.
If agent 1 reports II; such that there exists some Ily € Ry, with d(D(Pu,), D(Pu,)) > 9,
and agent 2 responds with such a partition and Prz12 = pg,, then the final score of agent 1
is capped at S(II;) — 2. This is lower than if they had reported II; € II* with P} = pu,,
so cannot be an equilibrium. Agent 2 cannot achieve a higher score by responding with a
different partition and prediction, so if they do not it must be because they respond with only
a prediction Pj , and their expected score from doing so is greater than 2 — S(IIy) + S(II,).
Then, agent 1’s score will be S(I1;) — [1 = S(II;) 4+ S(Ily)] = 25(I1;) — S(IIy) —2 < 0 < S(IT})
for any II}, so that also cannot be an equilibrium.

If agent 1 reports II; such that S(IT;) < S(IT") for some IT" € IT*, and there does not exist
some I, € Ry, such that d(D(Pr,), D(Pr,)) > 9§, then the final score of agent 1 is capped
at S(II;) < S(II}) for any I} € II*. This is because if it were higher, then agent 2 must
be receiving a score below 0, which cannot occur in equilibrium. As such, this cannot be
an equilibrium either, and so it must be that in any equilibrium, II; € II*. If II; € II* but
D(P},) # af,, then agent 2 can maximize their score by reporting Pj, = pum,, which as
shown in |[Hudson| |2025] will lower agent 1’s total score below S(II') for some II' € II*, so in

any equilibrium we also have that D(Py,) = ajy, .
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When agent 2 responds with a partition Il € Ry, and prediction Pﬁg = p,, agent 1’s

2

expected score is maximized with a prediction PﬁQ such that p%)( PL P2 )T = Po(py P2y,
27" g7 27" Mg 72

For any such prediction, agent 2 will receive an expected score of S(Il,) — S(I1;) < 0, and so
that cannot be an equilibrium. If P7, # pr,, then if there exists P, such that D(P},, P3,) =
afy, and E,[og(Py,, P, D(Pp,, PR,))s(P,,w) — s(Pg,,w)] > 0 or D(Py,, P,) # ajy, but
E,lai( Py, Ph,. D(PL,, PR,))s(Ph,,w) — s(P§,,w)] > 2, agent 1 will take such an action. If
they do, agent 2 will receive an expected score lower than S(IIy) —S(Il;) < 0, so this cannot
be an equilibrium. As such, in any equilibrium, agent 2 does not respond with a partition.

If agent 2 responds with a prediction, then as shown in [Hudson| [2025], we will have that

*

in any equilibrium D(Py , Pj,) = af, and p%)( = p,. The above

— 2
Py PR~ Poepy PR3 ) m
shows that this is an equilibrium, as any deviation induces a subgame resulting in a lower

score for the deviator. O
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